Protection against Plasmodium chabaudi malaria induced by immunization with apical membrane antigen 1 and merozoite surface protein 1 in the absence of gamma interferon or interleukin-4.
نویسندگان
چکیده
Strategies to optimize formulations of multisubunit malaria vaccines require a basic knowledge of underlying protective immune mechanisms induced by each vaccine component. In the present study, we evaluated the contribution of antibody-mediated and cell-mediated immune mechanisms to the protection induced by immunization with two blood-stage malaria vaccine candidate antigens, apical membrane antigen 1 (AMA-1) and merozoite surface protein 1 (MSP-1). Immunologically intact or selected immunologic knockout mice were immunized with purified recombinant Plasmodium chabaudi AMA-1 (PcAMA-1) and/or the 42-kDa C-terminal processing fragment of P. chabaudi MSP-1 (MSP-1(42)). The efficacy of immunization in each animal model was measured as protection against blood-stage P. chabaudi malaria. Immunization of B-cell-deficient JH(-/-) mice indicated that PcAMA-1 vaccine-induced immunity is largely antibody dependent. In contrast, JH(-/-) mice immunized with PcMSP-1(42) were partially protected against P. chabaudi malaria, indicating a role for protective antibody-dependent and antibody-independent mechanisms of immunity. The involvement of gammadelta T cells in vaccine-induced PcAMA-1 and/or PcMSP-1(42) protection was minor. Analysis of the isotypic profile of antigen-specific antibodies induced by immunization of immunologically intact mice revealed a dominant IgG1 response. However, neither interleukin-4 and the production of IgG1 antibodies nor gamma interferon and the production of IgG2a/c antibodies were essential for PcAMA-1 and/or PcMSP-1(42) vaccine-induced protection. Therefore, for protective antibody-mediated immunity, vaccine adjuvants and delivery systems for AMA-1- and MSP-1-based vaccines can be selected for their ability to maximize responses irrespective of IgG isotype or any Th1 versus Th2 bias in the CD4(+)-T-cell response.
منابع مشابه
Genetic immunization of BALB/c mice with a plasmid bearing the gene coding for a hybrid merozoite surface protein 1-hepatitis B virus surface protein fusion protects mice against lethal Plasmodium chabaudi chabaudi PC1 infection.
The genetic immunization of rodents with a plasmid coding for a Plasmodium chabaudi merozoite surface protein 1 (C terminus)-hepatitis B virus surface fusion protein (pPcMSP1(19)-HBs) provided protection of mice against subsequent lethal challenge with P. chabaudi chabaudi PC1-infected red blood cells. The percentage of survivor mice was higher in DNA-immunized mice than in animals immunized wi...
متن کاملOral immunization with a combination of Plasmodium yoelii merozoite surface proteins 1 and 4/5 enhances protection against lethal malaria challenge.
Oral immunization of mice with Escherichia coli-expressed Plasmodium yoelii merozoite surface protein 4/5 or the C-terminal 19-kDa fragment of merozoite surface protein 1 induced systemic antibody responses and protected mice against lethal malaria infection. A combination of these two proteins administered orally conferred improved protection compared to that conferred by either protein admini...
متن کاملLinkage Group Selection: Towards Identifying Genes Controlling Strain Specific Protective Immunity in Malaria
Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific...
متن کاملSuppression of lethal Plasmodium yoelii malaria following protective immunization requires antibody-, IL-4-, and IFN-gamma-dependent responses induced by vaccination and/or challenge infection.
Immunization with Plasmodium yoelii merozoite surface protein (PyMSP)-8 protects mice from lethal malaria but does not prevent infection. Using this merozoite surface protein-based vaccine model, we investigated vaccine- and infection-induced immune responses that contribute to protection. Analysis of prechallenge sera from rPyMSP-8-immunized C57BL/6 and BALB/c mice revealed high and comparable...
متن کاملRecombinant Mycobacterium bovis Bacillus Calmette-Guérin Secreting Merozoite Surface Protein 1 (MSP1) Induces Protection against Rodent Malaria Parasite Infection Depending on MSP1-stimulated Interferon γ and Parasite-specific Antibodies
The merozoite surface protein 1 (MSP1) has emerged as a leading malaria vaccine candidate at the erythrocytic stage. Recombinant bacillus Calmette-Guérin (rBCG), which expressed a COOH-terminal 15-kD fragment of MSP1 of Plasmodium yoelii (MSP1-15) as a fusion protein with a secretory protein of Mycobacterium kansasii, was constructed. Immunization of mice with this rBCG induced a higher degree ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 72 10 شماره
صفحات -
تاریخ انتشار 2004